

Mitco Weld Products Pvt. Ltd. A-97, Mangolpuri Industrial Area, Phase-II, Delhi - 110 034 (India)

- info@arconweldindia.com
- arcon@arconweldindia.com
- www.arconweldindia.com

Design and Specifications are subject to change without notice owing to continuous product upgradation.

ARCON is a registered trademark of Mitco Weld Products Pvt. Ltd.

Copyright © ARCON All rights reserved. Any unauthorized reproduction or use of logos, images or design elements is strictly prohibited by law. No part of the compilation may be reproduced in any manner without written permission.

SCAN TO VISIT WEBSITE

COMPANY PROFILE

'ARCON' group of companies, a New Delhi based company, is a manufacturer of a wide range of welding, cutting and safety products which are unbeatable in quality or any other assessments. Our aim is to provide quality Products at most reasonable prices.

Our entire range of products are timely examined under the guidance of visionary professionals who have vast experience in manufacturing these products. Our R&D teams assist us to keep on serving superior quality products. We are in the welding trade since last 43 years. With distributors and technical support offices located at Ahmedabad, Bhatinda (Punjab), Chennai, Delhi, Indore, Jaipur, Kolkata, Panipat, Raipur, Secunderabad, Singrauli and Nagpur and a number of dealers all over the Country, 'ARCON' group of companies is the leading supplier of a wide range of welding, cutting & safety products in India.

We hope that we may continue to rely on your warm support and guidance in order to serve you better.

WHAT IS WELDING

Welding is a fabrication process that joins material, usually metals or thermoplastics, by causing coalescence. This is often done by melting the work pieces and adding a filler material to form a pool of molten material (the meld puddle) that cools to become a strong joint, but sometimes pressure is used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the work pieces to form a bond between them without melting the work pieces.

Many different energy sources can be used for welding including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound.

Today welding is used in diverse areas of industry ranging from aircraft and rocket engines to small pipes.

The AWS definition for a welding process is "a material joining process which produces coalescence of materials by heating them to suitable temperatures with or without the application of pressure or by the application of pressure alone and with or without the use of filler material". AWS has grouped the processes together according to the "mode of energy transfer" as the primary consideration. A secondary factor is the "influence of capillary attraction in effecting distribution of filler metal" in the joint. Capillary attraction distinguishes the welding processes grouped under "Brazing" and "Soldering" from "Arc Welding", "Gas Welding", "Resistance Welding", "Solid State Welding", and other processes.

TABLE OF CONTENTS

Safety Helmet & Face Shield

Safety Shoes

Safety Belt and Harness & Lanyard

WELDING CONSUMABLES - GROUP 1		
GAS WELDING & CUTTING EQUIPMENTS - GROUP 2		
Pug Cutting Machine Heating Torches Welding Torch and CO2 Assembly Rubber Hose for Welding	13 14 15 16 &	
ELECTRIC WELDING ACCESSORIES - GROUP 3		
Welding Electrode/ Flux Drying Ovens Leather Safety Products	22 & 24 &	
WEI DING POWER SOURCES - GROUP 4		
Inverter Based Rectifier for MIG and Electrode Welding	30	
INDUSTRIAL SAFETY PRODUCTS - GROUP 5		
	Aluminium & Aluminium Alloy TIG/MIG Rods and Wires Stainless Steel TIG/MIG Rods & Wires Mild Steel (MS) TIG/MIG Rods & Wires Submerged Arc Welding (SAW) Wire GAS WELDING & CUTTING EQUIPMENTS - GROUP 2 Pressure Regulators Gas Cutter and Nozzles Pug Cutting Machine Heating Torches Welding Torch and CO2 Assembly Rubber Hose for Welding Hose Connectors NRV / FBA, Two-Way Valve, Long Barrel Torch, Cylinder Pressure Tester & Gas Manifold System ELECTRIC WELDING ACCESSORIES - GROUP 3 Flexible Welding Cables Welding Electrode Holders, Earth Clamp & Cable Connector Welding Electrode/ Flux Drying Ovens Leather Safety Products Welders' Helmet, Goggles, Hand Shields, Wire Brush & Chipping Hammer MIG Welding Torch WELDING POWER SOURCES - GROUP 4 Inverter Based Rectifier for MIG and Electrode Welding	Aluminium & Aluminium Alloy TIG/MIG Rods and Wires Stainless Steel TIG/MIG Rods & Wires 7 Mild Steel (MS) TIG/MIG Rods & Wires 8 Submerged Arc Welding (SAW) Wire 8 GAS WELDING & CUTTING EQUIPMENTS - 6ROUP 2 Pressure Regulators Gas Cutter and Nozzles 12 Pug Cutting Machine 13 Heating Torches 14 Welding Torch and CO2 Assembly 15 Rubber Hose for Welding 16 & Hose Connectors 17 NRV / FBA, Two-Way Valve, Long Barrel Torch, Cylinder Pressure Tester & Gas Manifold System ELECTRIC WELDING ACCESSORIES - 6ROUP 3 Flexible Welding Cables Welding Electrode Holders, Earth Clamp & Cable Connector Welding Electrode Flux Drying Ovens 12 & Welders' Helmet, Goggles, Hand Shields, Wire Brush & Chipping Hammer MIG Welding Torch & TIG Welding Torch 28 WELDING POWER SOURCES - GROUP 4 Inverter Based Rectifier for MIG and Electrode Welding 30

NOTES

MRKE IN INDIR

TIG / MIG RODS & WIRES FOR ALUMINIUM, STAINLESS STEEL & LOW ALLOY STEEL

Hydrocarbon

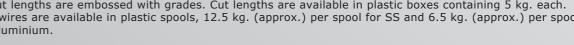

Clean weld bead profile

No porosity, no weld cracking

No black spots

ALUMINIUM TIG / MIG RODS & WIRES

DESIGNATION		CU	MG	SI	FE	MN	ZN
OLD	AWS	CU	MG	31		MIN	ZIV
G1B	1050	0.04		0.3	0.4	0.05	0.1
NG21	4043	0.1	0.2	4.5-6.0	0.6	0.5	0.2
NG2	4047	0.1	0.2	10-13	0.6	0.5	0.2
NG6	5356	0.1	4.5-5.5	0.6	0.5	0.5	0.2



STAINLESS STEEL TIG/MIG RODS AND WIRES

GRADE	C (Max %)	Cr (%)	Ni (%)	Mo (%)
201	0.15	14-16	0.90-1.20	0.30
304L	0.03	18-20	8.0-10.0	
ER-308L	0.02	19-21	9.5-11.0	
ER-309L	0.03	23-25	12.0-14.0	
310	0.08	25-28	20.0-22.0	
316L	0.03	16-18	10.0-14.0	2.0-3.0

All cut lengths are embossed with grades. Cut lengths are available in plastic boxes containing 5 kg. each. MIG wires are available in plastic spools, 12.5 kg. (approx.) per spool for SS and 6.5 kg. (approx.) per spool for aluminium.

MILD STEEL (MS) TIG / MIG FILLER RODS & WIRES

Excellent coating

Rust free

Low spatters

MILD STEEL (MS) TIG FILLER RODS

GRADE C (Max %)		Mn (%)	Mn (%) Si (%)		P (Max %)	
70SG	0.10	1.30-1.70	0.40-0.75	0.04	0.03	
70S2	0.07	0.9-1.4	0.40-0.70	0.04	0.025	

SUBMERGED ARC WELDING (SAW)

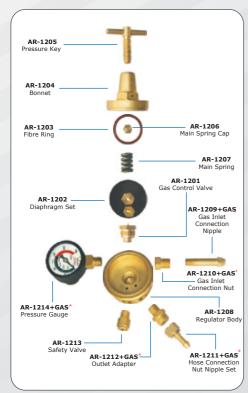
MILD STEEL WIRE

Excellent coating

Rust free

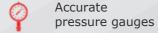
Ability to deposit large amounts of metal quickly, consistently and safely

Used for welding very large joints

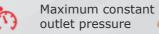


PRESSURE REGULATORS

(FOR INDUSTRIAL GASES)


SINGLE STAGE

Single stage pressure regulators are suitable for cutting, welding and heating processes. In this series, single gauge (showing only inlet pressure) and double gauge (showing both inlet and outlet pressure) regulators are available.



^{*+}Gas indicates that for different gases, spare parts will be different. Other parts are common in the above series.

B Forged brass

IS 6901 : 2018

CM/L-2587977

LPG REGULATORS

Available for 22mm & 25mm cylinder valves

MODEL: A-LPG CODE: ARC - 2013

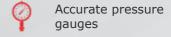
MODEL: A-1LPG CODE: ARC - 2015

MODEL: A-2 LPG CODE: ARC - 2014

TWO STAGE

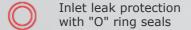
LINE GAS REGULATOR

PRESSURE CHART


GAS	INLET PRESSURE (MAX.)	OUTLET PRESSURE (MAX.)
OXYGEN	250 Bar	16 Bar
DA	40 Bar	2.8 Bar
ARGON	250 Bar	16 Bar
CO ₂	250 Bar	16 Bar
NITROGE	N 250 Bar	16 Bar
HYDROG	EN 250 Bar	16 Bar
LPG	16 Bar	2.8 Bar

BAR	PRESSURE	CONVERSION	FACTORS
1			bar
14	.5038		psi
1.0	1972		kg/cm²

•	BRONZE FILTERS	•
50 Micron	Fitted in Gas Control Valve (AR-1201)	1 No.

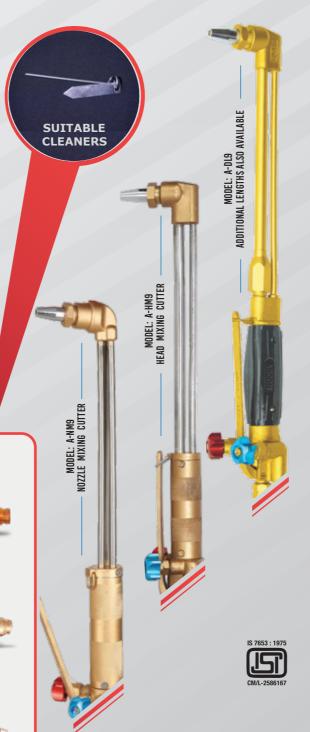

HIGH PRESSURE REGULATOR

Outlet pressure upto 100 Bar

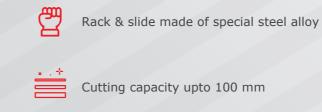
MANUAL BLOW PIPES

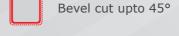
FOR CUTTING (GAS CUTTER)

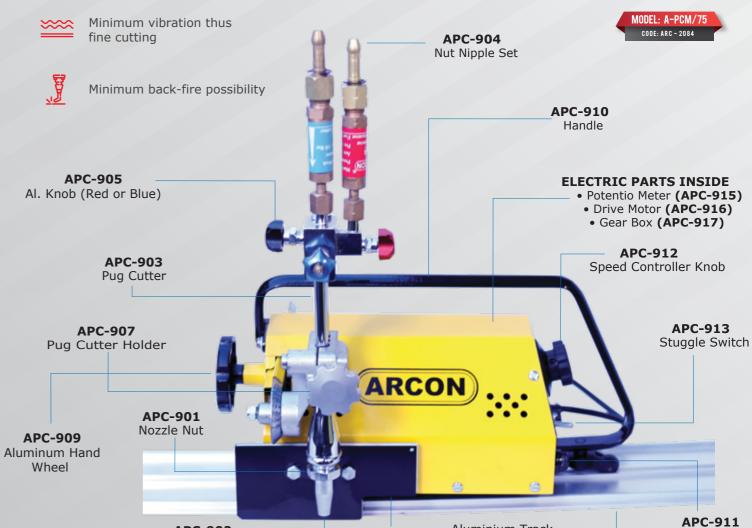
Manual Blow Pipes are suitable for cutting of ferrous metals with both oxy.-acty. or oxy.-lpg gas. Only difference for both gases is of cutting nozzles.


REPAIRING KIT

ALL RUBBER WASHERS USED IN CUTTER






SEMI-AUTOMATIC PORTABLE CUTTING MACHINE

PUG CUTTING MACHINE

KII	
Pug Cutter	1 No.
Pug Cutter Holder	1 No.
Cutting Nozzle, B-3/64	1 No.
Instructions Manual	1 No.
Instructions Manual	1 No

APC-914

Guard Plate

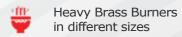
Aluminium Track

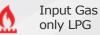
(For Straight Line Cutting)

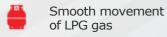
APC-902

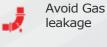
Gas Cutting Nozzle

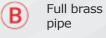
(A-Type / B-Type)



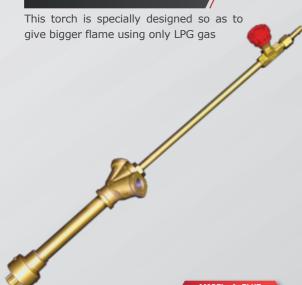

Fuse


LOW PRESSURE HEATING TORCH


(LPG HEATING TORCH)



only LPG

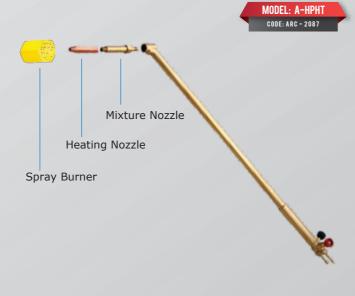


 Heating burners are available in 0,1,2,3,4,6 and 10 nos. 2 & 3 no. burners are available with the heating torch.

SPECIAL HEATING TORCH

FOR FOUNDRY

CODE: ARC-2095


MODEL: A-LPHT

HIGH PRESSURE HEATING TORCH

(OXY. / FUEL GAS HEATING TORCH)

Customisation of the product available

LOW PRESSURE MANUAL BLOW PIPES

GAS WELDING/BRAZING WITH **OXY.-FUEL GAS (WELDING TORCH)**

Join dissimilar & even non-metals

Clean and corrosion resistant joints

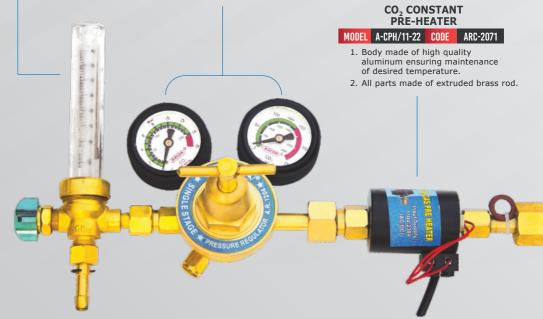
Cost effective method

CO₂ REGULATOR

Full brass construction

CO₂ ASSEMBLY

FLOW METER FOR ARGON/CO2 (READING: 0-40 LPM)


MODEL A-FM CODE ARC-2074

1. Unbreakable Polycarbonate tube.

2. Body made of forged brass.

MODEL: A-CCA CODE: ARC - 2075

1. Special diaphragm which is non reactive to CO2 gas is used.

RUBBER HOSE FOR WELDING

ARCON

RUBBER HOSE

Rugged and compact construction

Every inch of hose is rigorously tested to ensure no leakage

Available in different sizes as per requirement. red and blue color are available for fuel and oxygen gas respectively.

DUAL /TWIN RUBBER HOSE

Anti-abrasion smooth cover

Weather and ozone resistant cover

Flexible, light weight, less distortion

Here both blue and red hose are joined together hence user need not carry both the pipes separately.

DURO RUBBER HOSE

Made through a special process which ensure higher bursting pressure and longer life.

No problem of kinking

No deformation even after frequent clamping

LPG WIRE BRAIDED RUBBER HOSE

Reinforced with firmly & evenly braided high tensile iron wire

Seamless lining & uniform in thickness, smooth in bore & free from porosity

Rugged in design

Rated high on safety parameter scale

THERMOPLASTIC RUBBER (TPR) HOSE

Light in weight and highly flexible

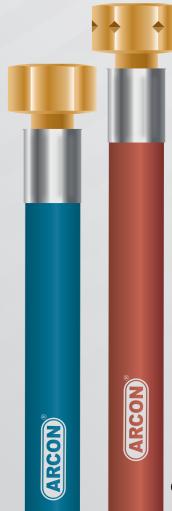
Especially suitable for circular cutting and while working at height

Double braiding ensures appropriate bursting pressure

TPR HOSE FOR ARGON/CO₂

Highly flexible suitable for shielding gas (like CO2, Argon)

Available in 6mm ID



No dimension deformation at high temperature

HOSE CONNECTORS (BRASS)

HOSE CRIMPLING

MAKE IN INDIA

NON RETURN VALVE(NRV)/ FLASHBACK ARRESTORS(FBA)

Allows gas to flow in one (right) direction

Breaks the flow of gas in reverse direction

Full brass connection

Available for Oxy./fuel Gas regulators & torches

TWO-WAY VALVE

FOR OXY. / FUEL GAS

Permits two welding/cutting jobs with a gas cylinder

Available for Oxy./fuel gas

INDUSTRIAL GAS MANIFOLD SYSTEM

LONG BARREL TORCH

GAS CYLINDER PRESSURE TESTER

Highly accurate wika gauge

Made from extruded brass rod

Available for different gases

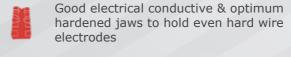
CUSTOMISED PRODUCTS

FLEXIBLE WELDING CABLES

WELDING ELECTRODE HOLDERS

A-TYPE/HEAVYDUTY(600A)/60%

This model is suitable for heavy duty welding.



Compact (tight) cable

Excellent current flow

No current leakage

Good electrical conductive medium for excellent flow of welding current

Both side insulated high tension spring used for excellent electrode grip

MM thread bolts for excellent cable grip

Available in 200A, 400A, 600A (fully & semi insulated)

Light in weight & durable quality for long life

B-TYPE Semi-insulated (for general open shop conditions).

TECHNICAL SPECIFICATIONS

CONDUCTOR NO. & DIA OF WIRES (MM²) (MM)		I ON 60% CYCLE	NOMINAL THICKNESS OF COVERING (MM)	MAX. D.C. RESISTANCE OF CONDUCTOR AT 20°C (OHMS/KM)	WEIGHT OF METAL (PER 100 MTRS.)				
HOFR / TRS	HOFR	TRS	HOFR / TRS	HOFR / TRS	IN KGS (APPROX.)				
COPPER CONDUCTOR									
510/0.2	174	121	2.0	1.210	15.5				
800/0.2	228	161	2.0	0.780	24.0				
1114/0.2	285	201	2.0	0.554	33.5				
708/0.3	360	254	2.2	0.386	48.0				
999/0.3	454	320	2.4	0.272	67.0				
1350/0.3	547	386	2.6	0.206	90.5				
UCTOR									
708/0.3	287	200	2.2	0.634	15.0				
999/0.3	361	253	2.4	0.445	21.0				
1350/0.3	438	306	2.6	0.334	28.5				
1702/0.3	522	365	2.8	0.256	34.5				
	OF WIRES (MM) HOFR / TRS OR 510/0.2 800/0.2 1114/0.2 708/0.3 999/0.3 1350/0.3 UCTOR 708/0.3 999/0.3 1350/0.3	NO. & DIA OF WIRES (MM) HOFR / TRS OR 510/0.2 174 800/0.2 228 1114/0.2 285 708/0.3 360 999/0.3 454 1350/0.3 547 UCTOR 708/0.3 287 999/0.3 361 1350/0.3 438	OF WIRES (MM) DUTY CYCLE (AMPS) HOFR / TRS HOFR TRS OR 510/0.2 174 121 800/0.2 228 161 1114/0.2 285 201 708/0.3 360 254 999/0.3 454 320 1350/0.3 547 386 UCTOR 708/0.3 287 200 999/0.3 361 253 1350/0.3 438 306	NO. & DIA OF WIRES (MM) MAXIMUM ON 60% DUTY CYCLE (AMPS) THICKNESS OF COVERING (MM) HOFR / TRS HOFR TRS HOFR / TRS OR 510/0.2 174 121 2.0 800/0.2 228 161 2.0 1114/0.2 285 201 2.0 708/0.3 360 254 2.2 999/0.3 454 320 2.4 1350/0.3 547 386 2.6 UCTOR 708/0.3 287 200 2.2 999/0.3 361 253 2.4 1350/0.3 438 306 2.6	NO. & DIA OF WIRES (MM) MAXIMUM ON 60% DUTY CYCLE (AMPS) THICKNESS OF COVERING (MM) RESISTANCE OF CONDUCTOR AT 20°C (OHMS/KM) HOFR / TRS HOFR / TRS HOFR / TRS HOFR / TRS OR 510/0.2 174 121 2.0 1.210 800/0.2 228 161 2.0 0.780 1114/0.2 285 201 2.0 0.554 708/0.3 360 254 2.2 0.386 999/0.3 454 320 2.4 0.272 1350/0.3 547 386 2.6 0.206 UCTOR 708/0.3 287 200 2.2 0.634 999/0.3 361 253 2.4 0.445 1350/0.3 438 306 2.6 0.334				

IDEAL WELDING JOB CONNECTION

EARTH CLAMP

Earth Clamps (Return Current Clamps) are suitable for ensuring electrical connection between return current cable and the work piece.

CABLE CONNECTOR

Welding Cable Connectors are suitable to connect any two lengths of flexible welding cable and are suitable to connect flexible welding cable to welding machine also.

RUBBER GRIP SCREW-TYPE

This model is available in 400A & 600A.

WELDING ELECTRODE/FLUX DRYING OVENS

Durable cabinet construction

Long life ss heating coil

Minimum heat loss

Quick drying electrodes/flux

Insulation on body to prevent current transfer

PORTABLE OVEN

MODEL: A-HQTS/5 CODE: ARC-3101

STATIONERY OVEN

Double door (electrode + flux combined)

MODEL: A-CODEF/100 CODE: ARC-3113

TECHNICAL SPECIFICATIONS

MODEL	ELECTRODE CAPACITY	TEMPERATURE CONTROLLER	TEMPERATURE	INPUT SUPPLY	LOAD (INPUT POWER)	INPUT	OVERALL DIMENSION	STORAGE SPACE	NO. OF SHELVES	NO. OF HEATING ELEMENT	EMPTY WEIGHT
MODEL: A-HQTS/2 CODE: ARC-3112	2 kg. (approx.)	Thermostat	50-300°C	230V-AC 50 Hz	500 Watts	2.0 A (approx.)	510mm X 105mm X 210mm	460mm X 50mm X 50mm	One	One	4 kg. (approx.)
MODEL : A-HQTS/5 CODE : ARC-3101	5 kg. (approx.)	Thermostat	50-300°C	230V-AC 50 Hz	500 Watts	2.0 A (approx.)	540mm X 150mm X 290mm	480mm X 70mm X 70mm	One	One	8 kg. (approx.)
MODEL : A-HQD/5 CODE : ARC-3102	5 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	500 Watts	2.0 A (approx.)	540mm X 150mm X 290mm	480mm x 70mm x 70mm	One	One	8 kg. (approx.)
MODEL : A-HQ/80V/5 CODE : ARC-3103	5 kg. (approx.)	Constant	150°C	80V-DC	300 Watts	3.5 A (approx.)	540mm X 150mm X 290mm	480mm X 70mm X 70mm	One	One	8 kg. (approx.)
MODEL : A-POTS/10 CODE : ARC-3104	10 kg. (approx.)	Thermostat	50-300°C	230V-AC 50 Hz	1.0 K.W.	4.0 A (approx.)	570mm X 330mm X 550mm	480mm X 140mm X 140mm	Two	Two	22 kg. (approx.)
MODEL : A-POD/10 CODE : ARC-3105	10 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	1.0 K.W.	4.0 A (approx.)	570mm X 330mm X 550mm	480mm X 140mm X 140mm	Two	Two	22 kg. (approx.)
MODEL: A-COTS/25 CODE : ARC-3106	25 kg. (approx.)	Thermostat	50-300° C	230V-AC 50 Hz	1.5 K.W.	7.5 A (approx.)	650mm x 485mm x 770mm	480mm X 310mm X 310mm	Five	Three	72 kg. (approx.)
MODEL: A-COD/25 CODE: ARC-3107	25 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	1.5 K.W.	7.5 A (approx.)	650mm X 485mm X 770mm	480mm X 310mm X 310mm	Five	Three	72 kg. (approx.)
MODEL: A-COD/50 CODE : ARC-3108	50 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	2.0 K.W.	10.0 A (approx.)	640mm x 665mm x 950mm	480mm X 480mm X 480mm	Five	Four	105 kg. (approx.)
MODEL: A-CODF/50 CODE: ARC-3111 Flux)	50 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	3.0 K.W.	15.0 A (approx.)	715mm X 780mm X 1080mm	550mm x 540mm x 540mm	Five	Six	125 kg. (approx.)
MODEL: A-COD/100 CODE: ARC-3109	100 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	3.0 K.W.	15.0 A (approx.)	760mm X 980mm X 1300mm	580mm X 710mm X 780mm	Ten	Six	200 kg. (approx.)
MODEL: A-CODF/100 CODE: ARC-3110 (Flux)	100 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	3.0 K.W.	15.0 A (approx.)	760mm	580mm 710mm X 780mm	Ten	Six	200 kg. (approx.)
MODEL: A-CODEF/100 CODE: ARC-3113 (Electrode + Flux)	100 kg. (approx.)	Digital	50-400°C	230V-AC 50 Hz	3.0 K.W.	15.0 A (approx.)	760mm X 980mm X 1300mm	580mm X 710mm X 780mm	Ten	Six	200 kg. (approx.)

LEATHER SAFETY PRODUCTS

SPLIT LEATHER HAND GLOVES 14"

CODE ARC-3077-A

PARA-ARAMID HAND GLOVES 14"

High Temperature (Heat resistant)

CODE ARC-3077-C

TIG WELDING HAND GLOVES 14"

CODE ARC-3077-B

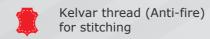
UNIVERSAL THUMB HAND GLOVES 14"

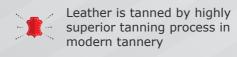
MIG WELDING HAND GLOVES 16"

Extra Soft

CODE ARC-3077-E

DG GLOVES (25MM)


CODE ARC-3077-F


CANADIAN HAND GLOVES 10"

LEATHER APRON (24" X 40")

CODE ARC-3079

ARM GUARD 19" (WITH VELCRO STRAP)

CODE ARC-3080

LEG GUARD 17"

SHOULDER GUARD 30"

CODE ARC-3082

LEATHER JACKET (L,XL & XXL)

WELDERS' HELMETS

(WITH CLEAR POLYCARBONATE FILTER COVER)

CODE ARC-3065

Full face to neck protection from welding uv & ir radiations

Interior parts are free from sharp edges for comfortable wear

Window viewing area (97 x 73 mm) for large area view

Dull low-reflective finish

Forehead sweatband absorbs sweat and improves helmet grip

Filter & filter cover size - 108 x 84 mm.

WELDERS' HAND SHIELDS

(WITH CLEAR POLYCARBONATE FILETR COVER)

CODE ARC-3063

Welders' Hand Shields are held in hand and are so designed to give protection to the eyes, ears, face, neck and part of the head of the user during welding and cutting processes.

WELDERS' GOGGLES

(WITH CLEAR POLYCARBONATE FILTER COVER)

CODE ARC-3061

Welders' Goggles are worn over the eyes and held in place by a head band. They are used for protecting the eyes and eye sockets from flying particles and injurious radiations.

WIRE BRUSH

Following are the types of wire brush available:

- Spring Steel 3 Rows
- Spring Steel 5 Rows
- Stainless Steel 3 Rows
- Stainless Steel 5 Rows

CHIPPING HAMMER

CODE ARC-3072

Chipping Hammers are used by welders for chipping welds & welding slag.

MIG/MAG/GMAW

SEMI-AUTOMATIC WELDING TORCH

MODEL: A-MT/300 CODE: ARC-3211

TECHNICAL SPECIFICATIONS

MODEL	RATING	COOLING METHOD	SUITABILITY	GAS FLOW	WEIGHT WITH 3 MTR. CABLE	CONNECTIONS
MODEL: A-MT/200 PROD. CODE: ARC-3201	200 Amp. at 60% duty cycle	Air cooling	Up to 0.8 mm MIG Wire	10 LPM	2.6 kg. (approx.)	Euro-Central connector
MODEL: A-MT/300 PROD. CODE: ARC-3211	300 Amp. at 60% duty cycle	Air cooling	Up to 1.2 mm MIG Wire	10 LPM	2.9 kg. (approx.)	Euro-Central connector

TIG / GTAW WELDING TORCH

(AIR COOLED)

MODEL: A-TT/300(GC CODE: ARC-3301

TECHNICAL SPECIFICATIONS

MODEL	RATING	COOLING Method	SUITABILITY	GAS FLOW	CABLE LENGTH	WEIGHT WITH 4 MTR. CABLE
MODEL: A-TT/200(GC) PROD. CODE: ARC-3301	200 Amp. at 60% duty cycle	Gas cooling	Up to 2.4mm Tungsten Electrode	5-10 LPM	4 mtr. (std.)	2.300 kgs. (approx.)
MODEL: A-TT/300(GC) PROD. CODE: ARC-3311	300 Amp. at 60% duty cycle	Gas cooling	Up to 3.0mm Tungsten Electrode	5-10 LPM	4 mtr. (std.)	2.550 kgs. (approx.)

Long life heating coil

Handle made of heat resistant material providing protection to hands from heat

Brass construction ensuring longer life

High quality washers used which ensures

WELDING POWER SOURCES

INVERTER BASE RECTIFIER

MMAW/ARC WELDING MACHINE (THREE CARD) MOSFET

(((

Triple Card ensuring best results with maximum life

Light weight and compact hence very easy to carry

Suitable for up to 3.15 mm electrode

MODEL NO.	INPUT SUPPLY VOLTAGE	INPUT FREQUENCY	WELDING CURRENT RANGE	MAX OCV	DUTY CYCLE	WEIGHT	APPROX SIZE " W X L X H
A-MMAW/200/1	220-230 V 1 phase	e 50 Hz	20-200 Amps	60-85	60%	6.0 kgs approx	15 X 6 X 9

MIG + ARC WELDING MACHINE

INSULATED-GATE BIPOLAR TRANSISTOR (IGBT)

Highly portable because of in-built wire feeder

Proper cooling mechanism hence better efficiency

Very easy repair and maintenance

Suitable for up to 0.8 mm Mig wire

MODEL NO.	INPUT SUPPLY VOLTAGE	INPUT FREQUENCY	WELDING CURRENT RANGE	MAX OCV	DUTY CYCLE	WEIGHT	APPROX SIZE " W X L X H
A-IME/250/3	380/415 3 Phase	50 Hz	25-250 Amps	50-60	60%	20 kgs approx	11 X 20 X 16
A-IME/250/1	220-230 V 1 Phase	e 50 Hz	25-250 Amps	50-60	60%	20 kgs approx	11 X 20 X 16

INDUSTRIAL SAFETY PRODUCTS

SAFETY HELMET

Rigid and sturdy

Resists penetration

Absorbs shock of blow

Easy turning ratchet knob

Very comfortable to wear

FACE SHIELD

INDUSTRIAL SAFETY BELT AND HARNESS

FALL ARRESTOR

High strength webbing

Minimum breaking load of 20 kn of all the parts used in harness ensuring maximum safety

Fluorescent color for easy visibility

No sharp edges in metal fittings

Very comfortable to wear

IS 3521 : 1999 CM/L-3273353

WEBBING LANYARD

SHOCK POLYAMIDE ROPE LANYARD

(32

SAFETY SHOES

NOTES

PVC SAFETY SHOES

High quality synthetic leather upper

Skid resistant pvc sole

Heavy Duty Steel Toe ensuring maximum safety

CODE ARC-5505 TO ARC-5512

RIO

CODE ARC-5525 TO ARC-5531

CODE ARC-5545 TO ARC-5551

AERO (HIGH ANKLE) CODE ARC-5565 TO ARC-5571

PU SAFETY SHOES

Pure leather upper

Injection Molded High Quality PÚ Sole

Synthetic Lining inside provides maximum comfort

Heavy duty steel toe ensuring maximum safety

